919. Physical Properties and Chemical Constitution. Part XXIX.* Acetylenic Compounds.

By Roman Grzeskowiak, George H. Jeffery, and Arthur I. Vogel.

Pure samples of a series of alk-1-ynes (hex-1-yne to tridec-1-yne), of prop-2-ynyl esters (formate to n-heptoate), and of but-2-yn-1,4-ylene diesters (diformate to di-n-heptoate) have been prepared, and their refractive indices at 20°, and densities and surface tensions over a range of temperatures, have been determined. The bond constants (refractions, molecular refraction coefficients, and parachors) for the carbon-to-carbon triple bond, both terminal and non-terminal, have been evaluated.

The present investigation was undertaken to secure trustworthy data on the physical properties of pure acetylenic compounds containing both terminal and non-terminal acetylenic groupings, and to evaluate the bond refractions, bond parachors, and bond molecular-refraction coefficients. Our initial measurements upon esters of but-3-yne-1carboxylic acid and dec-9-yne-1-carboxylic acid ${ }^{1}$ gave values for the various constants which were more trustworthy than those deduced by Campbell and Eveslage ${ }^{2,3}$ from various acetylenic hydrocarbons. We now present the results deduced from measurements upon pure acetylenic hydrocarbons (hex-1-yne to tridec-1-yne) and upon prop-2-ynyl esters, which lead to values for the terminal carbon-carbon triple bond: in addition, values for non-terminal acetylenic groups have been evaluated from new measurements upon the but-2-yn-1,4-ylene diesters (formate to n-heptoate). All the results for the bond constants, including those given in Part XVII, ${ }^{1}$ are collected in Table 1.

The mean CH_{2} values deduced from the measurements in the three series of compounds, together with the standard deviation s, are collected in Table 2.

* Part XXVIII, J., 1960, 4454.
${ }^{1}$ Jeffery and Vogel, Part XVII, J., 1948, 674.
${ }^{2}$ Campbell and Eveslage, J. Amer. Chem. Soc., 1945, 67, 1851.
${ }^{3}$ Cf. Hennion and Banigan, J. Amer. Chem. Soc., 1946, 68, 1381.

The bond constants for the carbon-carbon triple bond were calculated with the aid of the values given in Part XXIV. ${ }^{4}$

Table 1. Bond parachors, bond refractions (at 20°), and bond refraction coefficients (at 20°) for the carbon-carbon triple bond.

Series of compounds	No. of compounds	P	$\left.{ }^{2}\right]_{\mathrm{c}}$	$[R]_{\mathrm{D}}$	$[R]_{\mathbf{F}}$	$\left.{ }^{[R}\right]_{G^{*}}$	$M n_{0}{ }^{20}$
$\mathrm{CH} \equiv \mathrm{C} \cdot\left[\mathrm{CH}_{2}\right]_{2} \cdot \mathrm{CO}_{2} \mathrm{R}^{1}$	4	$53 \cdot 1$	$5 \cdot 86$	$5 \cdot 91$	6.01	$6 \cdot 11$	$25 \cdot 04$
$\mathrm{CH} \equiv \mathrm{C} \cdot\left[\mathrm{CH}_{2}\right]_{8} \cdot \mathrm{CO}_{2} \mathrm{R}^{1}$	3	$54 \cdot 0$	$5 \cdot 75$	$5 \cdot 80$	$5 \cdot 91$	6.00	$25 \cdot 06$
$\mathrm{CH} \equiv \mathrm{C} \cdot\left[\mathrm{CH}_{2}\right]_{n} \cdot \mathrm{CH}_{3}$	8	51.0	$5 \cdot 79$	$5 \cdot 82$	6.00	6.04	$24 \cdot 75$
Mean value of $\mathrm{C}: \mathrm{C}$ (terminal)	15	$52 \cdot 1{ }_{6}$	$5 \cdot 80_{1}$	$5 \cdot 84{ }_{0}$	$5 \cdot 918$	6.050	$24 \cdot 88{ }_{8}$
$\mathrm{CH}_{3} \cdot \mathrm{C}=\mathrm{C} \cdot \mathrm{O} \cdot \mathrm{COR}$	5	$55 \cdot 4$	$5 \cdot 83$	$5 \cdot 85$	6.02	6.07	25.43
$\mathrm{R} \cdot \mathrm{CO} \cdot \mathrm{O} \cdot \mathrm{CH}_{2} \cdot \mathrm{C} \equiv \mathrm{C} \cdot \mathrm{CH}_{2} \cdot \mathrm{O} \cdot \mathrm{COR} \ldots$	5	$51 \cdot 1$	$6 \cdot 40$	$6 \cdot 40$	$6 \cdot 59$	$6 \cdot 68$	$27 \cdot 45$

Table 2. Mean values for CH_{2}.

Experimental

Physical Measurements.-Full details are given in Part XXVIII. ${ }^{5}$ Unless otherwise stated, b. p.s are corrected. All the compounds were refractionated immediately before the measurements were made. The purity of every compound was established by vapour-phase chromatography (a Griffin \& George VPC apparatus, Mark II, was employed) and by infrared spectroscopy.

Preparation of Alk-1-ynes (Hept-1-yne to Tridec-1-yne, and 3-Cyclohexylprop-1-yne).-All the alkynes were prepared in accordance with the following scheme:

2,3-Dibromopropene ${ }^{6}$ when treated with the appropriate Grignard reagent gave the 2 -bromo-alk-1-ene (II), ${ }^{7}$ and the latter afforded the alk-1-yne with sodamide in liquid ammonia solution. ${ }^{8,9}$ The use of sodamide in liquid ammonia for dehydrohalogenation gives a better yield and is much more convenient than that involving a suspension of finely pulverised sodamide in a purified mineral oil of b. p. $>250^{\circ} .8,10$ The alcohols employed in the preparation of the Grignard reagents were highly purified commercial products.

Preparation of Hex-1-yne. -The above general procedure gave a very poor yield of hex-1-yne. It was prepared from n-butyl bromide and sodium acetylide ${ }^{11}$ on a large scale, and the pure hydrocarbon was isolated by fractionation through a long Fenske column.

Esters of Prop-2-yn-1-ol with Aliphatic Monocarboxylic Acids.-The esters (except formate) were prepared in good yield by azeotropic distillation of the alcohol (b. p. $114^{\circ} / 760 \mathrm{~mm}$.) and the pure acid in benzene in the presence of ZeoKarb 225(H) as catalyst. ${ }^{12}$ For the acetate and propionate, 2 mol . of acid to 1 mol . of alcohol were used: for esters of the higher acids, excess of alcohol (which is readily separated from the ester by fractional distillation) was employed.

[^0]Table 3.
Ref.

no	Compound	B. p./mm.	d_{4}^{20}	d_{4}^{40}	d_{4}^{60}	d_{4}^{85}	γ_{20}	γ_{40}	γ_{60}	γ_{85}	P	Notes
Hydrocarbons												
746	Hex-1-yne	$71.5{ }^{\circ}$	0.7150		,		20.98	-	-	-	$245 \cdot 8$	a
747	Hept-1-yne	$99.5{ }^{\circ}$	0.7329	$0 \cdot 7149$	$0 \cdot 6969$	-	22.67	20.61	18.50		286.2	b
748	Oct-1-yne	124.5°	0.7462	0.7298	0.7125	0.6914	23.86	21.78	$19 \cdot 70$		326.3	c
749	Non-1-yne	$57^{\circ} / 25$	0.7580	0.7423	$0 \cdot 7261$	$0 \cdot 7047$	$25 \cdot 00$	23.02	21.05	$18 \cdot 60$	366.5	d
750	Dec-1-yne	$73 \cdot 5^{\circ} / 25$	0.7661	0.7510	0.7353	$0 \cdot 7154$	25.95	24.00	22.07	$19 \cdot 67$	$407 \cdot 2$	
751	Undec-1-yne	$94 \cdot 5^{\circ} / 25$	$0 \cdot 7729$	0.7580	$0 \cdot 7425$	$0 \cdot 7235$	26.58	24.71	22.82	$20 \cdot 48$	$447 \cdot 2$	
752	Dodec-1-yne	$113.5^{\circ} / 25$	0.7787	0.7650	0.7503	$0 \cdot 7317$	$27 \cdot 18$	$25 \cdot 33$	23.49	$21 \cdot 12$	$487 \cdot 3$	g
753	Tridec-1-yne	$125^{\circ} / 25$	0.7844	0.7707	0.7562	$0 \cdot 7380$	27.55	25.69	23.81	$21 \cdot 46$	526.8	h
754	3-Cyclohexyl-prop-1-yne	55 ${ }^{\circ} / 21$	$0 \cdot 8445$	0.8285	$0 \cdot 8120$	$0 \cdot 7925$	$29 \cdot 80$	27-84	25.90	23.48	338.6 *	
Esters of prop-2-yn-1-ol												
755	Formate	$105 \cdot 5^{\circ}$	$1 \cdot 0452$	1.0218	0.9986	$0 \cdot 9700$	35.00	32-17	29.34		195.8*	
756	Acetate	121.5°	0.9982	0.9761	0.9541	0.9275	32.81	30.20	27.58		235.2*	
757	Propionate	138.5°	0.9726	0.9515	0.9297	$0 \cdot 9022$	31.27	28.82	26.44	23.44	$272 \cdot 8$	
758	Butyrate	156.0°	0.9495	0.9299	$0 \cdot 9098$	$0 \cdot 8837$	30.04	27.83	$25 \cdot 66$	22.90	$311 \cdot 4$	
759	Valerate	$84 \cdot 0^{\circ} / 25$	0.9360	0.9176	$0 \cdot 8985$	0.8752	29.78	27.69	$25 \cdot 61$	22.98	$350 \cdot 2$	
760	Hexanoate	$97 \cdot 5^{\circ} / 25$	0.9248	0.9075	0.8892	$0 \cdot 8668$	29.52	27.51	25.52	23.01	389.2	
761	Heptanoate	$112.0^{\circ} / 25$	0.9172	0.9015	$0 \cdot 8831$	$0 \cdot 8620$	$29 \cdot 66$	27.78	25.90	23.52	428.0	
762	$\underset{\text { Prop-2-yn- }}{1-\text { ol }}$	$113.5{ }^{\circ}$	0.9475	0.9308	0.9115	$0 \cdot 8905$	36.04	33.50	30.98		144.9*	
Diesters of but-2-yne-1,4-diol												
763	Formate	$86^{\circ} / 1$	$1 \cdot 2244$	1-2036	1-1825	1-1562	-	$45 \cdot 65$	42.74	$39 \cdot 15$	306.3*	
764	Acetate	$116^{\circ} / 4$	1-1263	1-1070	1.0869	1.0631		38.20	35-78	32.71	381.8*	b
765	Propionate	$120^{\circ} / 2$	1.0701	1.0513	1.0331	1.0062	36.16	34.07	31.98	29.38	453.6	
766	Butyrate	$116^{\circ} / 1$	1.0277	1.0094	0.9918	0.9698	$33 \cdot 14$	31.42	$29 \cdot 70$	$27 \cdot 50$	528.0	
769	Valerate	$134^{\circ} / 1$	1.0024	0.9863	0.9695	0.9478	32.02	$30 \cdot 40$	28.88	26.71	$604 \cdot 0$	
768	Hexanoate	$158^{\circ} / 1$	0.9814	0.9656	0.9503	0.9303	31.48	$29 \cdot 87$	$28 \cdot 22$	$26 \cdot 15$	681.0	
769	Heptanoate	$175^{\circ} / 1$	$0 \cdot 9655$	0.9508	0.9355	0.9165	31-23	29.80	28.35	26.51	760.5	

[^1]In all cases, the cation-exchange resin was filtered off after water ceased to distil into the Dean and Stark tube: for the acetate and propionate, the excess of acid was removed by shaking the mixture with excess of sodium hydrogen carbonate solution, and the neutral product washed with water, dried, and fractionated. For the n-butyrate and higher esters, the crude ester fraction was first isolated by fractionation, washed with water, dried, and fractionated again. Since formic acid is not miscible with benzene, the ester was prepared by refluxing the alcohol with excess of acid in methylene chloride solution for 14 hr ., and the ester isolated in the usual manner (yield 50%).

The following esters are new: formate (Found: C, $57 \cdot 4 ; \mathrm{H}, 4 \cdot 8 . \quad \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{2}$ requires C, 57.2; $\mathrm{H}, 4 \cdot 8 \%$) ; propionate (Found: C, $64 \cdot 4 ; \mathrm{H}, 7 \cdot 3 . \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{2}$ requires C, $64 \cdot 4 ; \mathrm{H}, 7 \cdot 2 \%$); butyrate (Found: C, $66.5 ; \mathrm{H}, 8.0 . \mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}_{2}$ requires $\mathrm{C}, 66.6 ; \mathrm{H}, 7.9 \%$); valerate (Found: C, 68.8; $\mathrm{H}, 8 \cdot 6 . \mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{2}$ requires C, $68 \cdot 6 ; \mathrm{H}, 8 \cdot 6 \%$); hexanoate (Found: C, 70.2; H, 9.1. $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $\mathrm{C}, 70 \cdot 0 ; \mathrm{H}, 9 \cdot 1 \%$); and heptanoate (Found: C, $71 \cdot 1 ; \mathrm{H}, 9.7 . \mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}$ requires C, $71 \cdot 3 ; \mathrm{H}, 9.6 \%$).

Diesters of But-2-yne-1,4-diol with Aliphatic Monocarboxylic Acids.-The procedure adopted was similar to that described for prop-2-ynyl esters: benzene was used as solvent for all esters except the diformate, for which methylene chloride was satisfactory. The proportions used
were butynediol, m. p. 54°, 1 mol. , and acid $5-6 \mathrm{~mol}$. After $25-30$ hours' refluxing, the cation-exchange resin was filtered off: for the diformate and the diacetate, the reaction product was neutralised with saturated sodium hydrogen carbonate solution, washed with water, dried, and fractionated. For the higher esters, the solvent was removed by distillation at atmospheric pressure, and the excess of acid at 2 mm .: the residual ester was washed with saturated sodium hydrogen carbonate solution until neutral, then with water, dried, and fractionally distilled. The yields in all cases were excellent.

$a-k$ See Table 3.

The following esters are new: diformate (Found: $\mathrm{C}, 50 \cdot 7 ; \mathrm{H}, 4 \cdot 4 . \quad \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{4}$ requires $\mathrm{C}, 50 \cdot 6$; $\mathrm{H}, 4.2 \%$); dipropionate (Found: $\mathrm{C}, 60 \cdot 6 ; \mathrm{H}, 6.9 . \mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{4}$ requires $\mathrm{C}, 60 \cdot 5 ; \mathrm{H}, 7 \cdot 0 \%$); dibutyrate (Found: $\mathrm{C}, 63.5 ; \mathrm{H}, 8.2 . \mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{4}$ requires $\mathrm{C}, 63.5 ; \mathrm{H}, 8.0 \%$); divalerate (Found: $\mathrm{C}, 66 \cdot 0 ; \mathrm{H}, 8.5 . \quad \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4}$ requires $\mathrm{C}, 66 \cdot 0 ; \mathrm{H}, 8 \cdot 6 \%$); dihexanoate (Found: $\mathrm{C}, 67 \cdot 6 ; \mathrm{H}, 9 \cdot 2$. $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{4}$ requires $\mathrm{C}, 67 \cdot 9 ; \mathrm{H}, 9 \cdot 2 \%$); and diheptanoate (Found: $\mathrm{C}, 69 \cdot 6 ; \mathrm{H}, 9 \cdot 6 . \quad \mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{4}$ requires $\mathrm{C}, 69 \cdot 6 ; \mathrm{H}, 9 \cdot 6 \%$).

Tables 3 and 4 summarise the physical properties of all the pure acetylenic compounds investigated; the numbering of compounds in Clarendon type follows from Part XXVIII. ${ }^{5}$ Table 3 contains the b. p. (at 760 mm ., unless otherwise stated), rounded values of the density, and surface tension at various temperatures, and the mean parachor; and Table 4 gives the refractive indices, molar refractivities, and the molar refraction coefficients.

The authors thank Imperial Chemical Industries Limited for a grant.

[^0]: ${ }^{4}$ Vogel, Cresswell, Jeffery, and Leicester, Part XXIV, J., 1952, 14.
 ${ }^{5}$ Kyte, Jeffery, and Vogel, J., 1960, 4454.
 ${ }^{6}$ Org. Synth., Coll. Vol., 1941, 2nd edn., 209.
 ${ }^{7}$ Cf. ibid., p. 186.
 ${ }^{8}$ Cf. ibid., p. 191.
 ${ }^{9}$ Vaughn, Vogt, and Newland, J. Amer. Chem. Soc., 1934, 56, 2120.
 10 Bourguel, Ann. Chim. (France), 1925, 3, 231.
 11 Vogel, "Practical Organic Chemistry," 3rd edn., 1957, Longmans, Green \& Co., p. 897.
 ${ }^{12}$ Sussmann, Ind. Eng. Chem., 1946, 38, 1229.

[^1]: * Not used in the calculation of the mean values for $\left(\mathrm{CH}_{2}\right)$ and for ($\mathrm{C} \equiv \mathrm{C}$).
 a $d_{4}^{14} 0.7203$; $\gamma_{14} 21 \cdot 80$; Campbell and Eby (J. Amer. Chem. Soc., 1941, 68, 2684) give $d_{4}^{20} 0.71518$, $n_{\mathrm{D}}^{20} 1 \cdot 39840$; cf. Henne and Greenlee (ibid., 1945, 67, 485), Levina et al. [J. Gen. Chem. (U.S.S.R.), 1951, 21, 240]. $\quad b$ Campbell and Eby (loc. cit.) give $d_{4}^{20} 0.73379, n^{20} 1.40840$; cf. refs. 14, 15 . c Campbell and Eby (loc. cit.) give $d_{4}^{20} 0.7463, n_{D}{ }^{20} 1 \cdot 41565$; cf. refs. 14, 16. d Elsner and Paul (J., 1951, 893) give $n_{\mathrm{D}}{ }^{20} 1 \cdot 4224$; cf. ref. 10 . e Elsner and Paul (loc. cit.) give $n_{\mathrm{D}}{ }^{20} 1 \cdot 4269$; cf. ref. 17. f Brown, Greenlee, and Fusari (J. Amer. Oil Chemists' Soc., 1951, 28, 416) give $n_{\mathrm{D}}{ }^{20} 1-4328$. g Brown, Greenlee, and Fusari (loc. cit.) give $n_{\mathrm{D}^{20}} 1 \cdot 4343$; cf. ref. 17. h Elsner and Paul (loc. cit.) give $n_{\mathrm{D}^{20}}$ 1.4374; cf. Lamb and Smith (J., 1952, 5032). i Henne and Greenlee (loc. cit.) give $d_{4}^{20} 0.9478, n^{20}$ 1-4320; cf. Hennion and Murray (J. Amer. Chem. Soc., 1942, 64, 1220). j M. p. $35 \cdot 5^{\circ}$. Refractive index values at 20° are for the supercooled liquid; $n^{3}{ }^{35} \mathrm{I} \cdot 45441 ; d_{4}^{20}$ obtained by extrapolation. k M. p. $28 \cdot 3^{\circ}$. Refractive index values at 20° are for the supercooled liquid; $n_{D_{0}}{ }^{35} 1 \cdot 44822 ; a_{4}^{20}$ obtained by extrapolation. Hennion and Kupiecki (J. Org. Chem., 1953, 18, 1601) give $n_{\mathrm{D}}{ }^{25}{ }^{1} 45512$; d^{25} 1-1223; cf. Johnson, J., 1946, 1009.

